Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38475012

RESUMO

Motion reconstruction using wearable sensors enables broad opportunities for gait analysis outside laboratory environments. Inertial Measurement Unit (IMU)-based foot trajectory reconstruction is an essential component of estimating the foot motion and user position required for any related biomechanics metrics. However, limitations remain in the reconstruction quality due to well-known sensor noise and drift issues, and in some cases, limited sensor bandwidth and range. In this work, to reduce drift in the height direction and handle the impulsive velocity error at heel strike, we enhanced the integration reconstruction with a novel kinematic model that partitions integration velocity errors into estimates of acceleration bias and heel strike vertical velocity error. Using this model, we achieve reduced height drift in reconstruction and simultaneously accomplish reliable terrain determination among level ground, ramps, and stairs. The reconstruction performance of the proposed method is compared against the widely used Error State Kalman Filter-based Pedestrian Dead Reckoning and integration-based foot-IMU motion reconstruction method with 15 trials from six subjects, including one prosthesis user. The mean height errors per stride are 0.03±0.08 cm on level ground, 0.95±0.37 cm on ramps, and 1.27±1.22 cm on stairs. The proposed method can determine the terrain types accurately by thresholding on the model output and demonstrates great reconstruction improvement in level-ground walking and moderate improvement on ramps and stairs.


Assuntos
Algoritmos , , Humanos , Caminhada , Movimento (Física) , Aceleração , Fenômenos Biomecânicos , Marcha
2.
Med Sci Sports Exerc ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240495

RESUMO

PURPOSE: Understanding muscle-tendon forces (e.g., triceps surae and Achilles tendon) during locomotion may aid in the assessment of human performance, injury risk, and rehabilitation progress. Shear wave tensiometry is a noninvasive technique for assessing in vivo tendon forces that has been recently adapted to a wearable technology. However, previous lab-based and outdoor tensiometry studies have not evaluated running. This study was undertaken to assess the capacity for shear wave tensiometry to produce valid measures of Achilles tendon loading during running at a range of speeds. METHODS: Participants walked (1.34 m/s) and ran (2.68, 3.35, and 4.47 m/s) on an instrumented treadmill while shear wave tensiometers recorded Achilles tendon wave speeds simultaneously with whole body kinematic and ground reaction force data. A simple isometric task allowed for the participant-specific conversion of Achilles tendon wave speeds to forces. Achilles tendon forces were compared to ankle torque measures obtained independently via inverse dynamics analyses. Differences in Achilles tendon wave speed, Achilles tendon force, and ankle torque across walking and running speeds were analyzed with linear mixed-effects models. RESULTS: Achilles tendon wave speed, Achilles tendon force, and ankle torque exhibited similar temporal patterns across the stance phase of walking and running. Significant monotonic increases in peak Achilles tendon wave speed (56.0-83.8 m/s), Achilles tendon force (44.0-98.7 N/kg), and ankle torque (1.72-3.68 N-m/kg) were observed with increasing locomotion speed (1.34-4.47 m/s). Tensiometry estimates of peak Achilles tendon force during running (8.2-10.1 body weights) were within the range of those estimated previously via indirect methods. CONCLUSIONS: These results set the stage for using tensiometry to evaluate Achilles tendon loading during unobstructed athletic movements, such as running, performed in the field.

3.
J Biomech ; 152: 111574, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043927

RESUMO

Challenging balance training that targets age-related neuromuscular and motor coordination deficits is needed for effective fall prevention therapy. Goal-directed training can provide intrinsically motivating balance activities but may not equally challenge balance for all age groups. Therefore, the purpose of this research was to quantify age-specific effects of dynamic balance training with real-time visual feedback. Kinematics, muscle activity, and user perceptions were collected for forty healthy adults (20 younger, 18-39 years; 20 older, 58-74 years), who performed a single balance training session with or without real-time visual feedback. Feedback involved controlling either a physical mobile robot or screen-based virtual ball through a course with standing tilt motions from an instrumented wobble board. Dynamic balance training was more challenging for older compared to younger adults, as measured by significantly higher dorsiflexor and knee extensor muscle activity and ankle co-contractions (50%-80%, p<0.05). Older participants also performed more motion while training without feedback compared to younger adults (22%-65%, p<0.05). Robotic and virtual real-time visual feedback elicited similar biomechanical adaptations in older adults, reducing motions to similar levels as younger adults and increasing ankle co-contractions (p<0.05). Despite higher muscular demand, perceived physical exertion and high enjoyment levels (Intrinsic Motivation Inventory >0.80) were consistent across groups. However, robotic visual feedback may be more challenging than virtual feedback based on more frequent balance corrections, lower perceived competence, and lower game scores for older compared to younger adults. These findings collectively support the feedback system's potential to provide engaging and challenging at-home balance training across the lifespan.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Idoso , Retroalimentação Sensorial , Terapia por Exercício , Fatores Etários , Equilíbrio Postural/fisiologia
4.
J Biomech ; 147: 111436, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36701959

RESUMO

This paper presents the effectsof the Variable Stiffness Foot (VSF) on lower-limb joint mechanics in level-ground walking. Persons with transtibial amputations use lower-limb prostheses to restore level-ground walking, and foot stiffness and geometry have been shown to be the main factors for evaluating foot prostheses. Previous studies have validated the semi-active and stiffness modulation capabilities of the VSF. The core aim of this study is to investigate the mechanical effects of adjusting stiffness on knee and ankle mechanics for prosthetic users wearing the VSF. For this study, seven human participants walked with three different stiffnesses (compliant, medium, stiff) of the VSF across two force plates in a motion capture lab. Linear mixed models were utilized to estimate the significance and coefficients of determinations for the regression of stiffness on several biomechanical metrics. A stiffer VSF led to decreased ankle dorsiflexion angle (p < 0.0001, r2 = 0.90), increased ankle plantarflexor moment (p = 0.016, r2 = 0.40), increased knee extension (p = 0.021, r2 = 0.37), increased knee flexor moment (p = 0.0007, r2 = 0.63), and decreased magnitudes of prosthetic energy storage (p < 0.0001, r2 = 0.90), energy return (p = 0.0003, r2 = 0.67), and power (p < 0.0001, r2 = 0.74). These results imply lower ankle, knee, and hip moments, and more ankle angle range of motion using a less stiff VSF, which may be advantageous to persons walking with lower-limb prostheses. Responsive modulation of the VSF stiffness, according to these findings, could help overcome gait deviations associated with different slopes, terrain characteristics, or footwear.


Assuntos
Membros Artificiais , , Humanos , Fenômenos Biomecânicos , Caminhada , Extremidade Inferior , Marcha , Articulação do Tornozelo
5.
Sensors (Basel) ; 22(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36560355

RESUMO

Exoskeletons and exosuits (collectively termed EXOs) have the potential to reduce the risk of work-related musculoskeletal disorders (WMSDs) by protecting workers from exertion and muscle fatigue due to physically demanding, repetitive, and prolonged work in construction workplaces. However, the use of EXOs in construction is in its infancy, and much of the knowledge required to drive the acceptance, adoption, and application of this technology is still lacking. The objective of this research is to identify the facilitators, barriers, and corresponding solutions to foster the adoption of EXOs in construction workplaces through a sequential, multistage Delphi approach. Eighteen experts from academia, industry, and government gathered in a workshop to provide insights and exchange opinions regarding facilitators, barriers, and potential solutions from a holistic perspective with respect to business, technology, organization, policy/regulation, ergonomics/safety, and end users (construction-trade professionals). Consensus was reached regarding all these perspectives, including top barriers and potential solution strategies. The outcomes of this study will help the community gain a comprehensive understanding of the potential for EXO use in the construction industry, which may enable the development of a viable roadmap for the evolution of EXO technology and the future of EXO-enabled workers and work in construction workplaces.


Assuntos
Indústria da Construção , Exoesqueleto Energizado , Doenças Profissionais , Humanos , Doenças Profissionais/prevenção & controle , Ergonomia/métodos , Local de Trabalho
6.
J Prosthet Orthot ; 34(4): 202-212, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36157327

RESUMO

Introduction: The design and selection of lower-limb prosthetic devices is currently hampered by a shortage of evidence to drive the choice of prosthetic foot parameters. We propose a new approach wherein prostheses could be designed, specified, and provided based on individualized measurements of the benefits provided by candidate feet. In this manuscript, we present a pilot test of this evidence-based and personalized process. Methods: We previously developed a "prosthetic foot emulator," a wearable robotic system that provides users with the physical sensation of trying on different prosthetic feet before definitive fitting. Here we detail preliminary demonstrations of two possible approaches to personalizing foot design: 1) an emulation and test-drive strategy of representative commercial foot models, and 2) a prosthetist-driven tuning procedure to optimize foot parameters. Results: The first experiment demonstrated large and sometimes surprising differences in optimal prosthetic foot parameters across a variety of subjects, walking conditions, and outcome measures. The second experiment demonstrated a quick and effective simple manual tuning procedure for identifying preferred prosthetic foot parameters. Conclusions: Emulator-based approaches could improve individualization of prosthetic foot prescription. The present results motivate future clinical studies of the validity, efficacy, and economics of the approach across larger and more diverse subject populations. Clinical Relevance: Today, emulator technology is being used to accelerate research and development of novel prosthetic and orthotic devices. In the future, after further refinement and validation, this technology could benefit clinical practice by providing a means for rapid test-driving and optimal selection of clinically available prosthetic feet.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36094982

RESUMO

Providing aging adults with engaging, at-home balance therapy is essential to promote long-term adherence to unsupervised training and to foster independence. We developed a portable interactive balance training system that provides real-world visual cues on balance performance using wobble board tilt angles to control the speed of a robotic car platform in a three-dimensional environment. The goal of this study was to validate this mobile balance therapy system for home use across the lifespan. Twenty younger (18-39 years) and nineteen older (58-74 years) healthy adults performed balance training with and without visual feedback while standing on a wobble board instrumented with a consumer-grade inertial measurement unit (IMU) and optical motion tracking markers. Participants performed feedback trials based on either the robotic car's movements or a commercially-available virtual game. Wobble board tilt measurements were highly correlated between IMU and optical measurement systems ( [Formula: see text]), with high agreement in outcome metrics ( [Formula: see text]) and small bias ( [Formula: see text]). Both measurement systems identified similar aging, feedback, and stance type effects including (1) altered movement control when older adults performed tilting trials with either robotic or virtual feedback compared to without feedback, (2) two-fold greater wobble board oscillations in older vs. younger adults during steady standing, (3) no difference in board oscillations during steady standing in narrow vs. wide double support, and (4) greater wobble board oscillations for single compared to double support. These findings demonstrate the feasibility of implementing goal-directed robotic balance training with mobile tracking of balance performance in home environments.


Assuntos
Equilíbrio Postural , Procedimentos Cirúrgicos Robóticos , Idoso , Terapia por Exercício/métodos , Retroalimentação , Retroalimentação Sensorial , Humanos , Longevidade
8.
J Rehabil Assist Technol Eng ; 9: 20556683221111986, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859652

RESUMO

Introduction: Loading of a residual limb within a prosthetic socket can cause tissue damage such as ulceration. Computational simulations may be useful tools for estimating tissue loading within the socket, and thus provide insights into how prosthesis designs affect residual limb-socket interface dynamics. The purpose of this study was to model and simulate residual limb-socket interface dynamics and evaluate the effects of varied prosthesis stiffness on interface dynamics during gait. Methods: A spatial contact model of a residual limb-socket interface was developed and integrated into a gait model with a below-knee amputation. Gait trials were simulated for four subjects walking with low, medium, and high prosthesis stiffness settings. The effects of prosthesis stiffness on interface kinematics, normal pressure, and shear stresses were evaluated. Results: Model-predicted values were similar to those reported previously in sensor-based experiments; increased stiffness resulted in greater average normal pressure and shear stress (p < 0.05). Conclusions: These methods may be useful to aid experimental studies by providing insights into the effects of varied prosthesis design parameters or gait conditions on residual limb-socket interface dynamics. The current results suggest that these effects may be subject-specific.

9.
Sensors (Basel) ; 22(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35214491

RESUMO

Muscle-tendon power output is commonly assessed in the laboratory through the work loop, a paired analysis of muscle force and length during a cyclic task. Work-loop analysis of muscle-tendon function in out-of-lab conditions has been elusive due to methodological limitations. In this work, we combined kinetic and kinematic measures from shear wave tensiometry and inertial measurement units, respectively, to establish a wearable system for estimating work and power output from the soleus and gastrocnemius muscles during outdoor locomotion. Across 11 healthy young adults, we amassed 4777 strides of walking on slopes from -10° to +10°. Results showed that soleus work scales with incline, while gastrocnemius work is relatively insensitive to incline. These findings agree with previous results from laboratory-based studies while expanding technological capabilities by enabling wearable analysis of muscle-tendon kinetics. Applying this system in additional settings and activities could improve biomechanical knowledge and evaluation of protocols in scenarios such as rehabilitation, device design, athletics, and military training.


Assuntos
Tendão do Calcâneo , Dispositivos Eletrônicos Vestíveis , Tendão do Calcâneo/fisiologia , Fenômenos Biomecânicos/fisiologia , Humanos , Cinética , Locomoção/fisiologia , Músculo Esquelético/fisiologia , Adulto Jovem
10.
Sensors (Basel) ; 21(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34577219

RESUMO

(1) Background: Semi-active prosthetic feet can provide adaptation in different circumstances, enabling greater function with less weight and complexity than fully powered prostheses. However, determining how to control semi-active devices is still a challenge. The dynamic mean ankle moment arm (DMAMA) provides a suitable biomechanical metric, as its simplicity matches that of a semi-active device. However, it is unknown how stiffness and locomotion modes affect DMAMA, which is necessary to create closed-loop controllers for semi-active devices. In this work, we develop a method to use only a prosthesis-embedded load sensor to measure DMAMA and classify locomotion modes, with the goal of achieving mode-dependent, closed-loop control of DMAMA using a variable-stiffness prosthesis. We study how stiffness and ground incline affect the DMAMA, and we establish the feasibility of classifying locomotion modes based exclusively on the load sensor. (2) Methods: Human subjects walked on level ground, ramps, and stairs while wearing a variable-stiffness prosthesis in low-, medium-, and high-stiffness settings. We computed DMAMA from sagittal load sensor data and prosthesis geometric measurements. We used linear mixed-effects models to determine subject-independent and subject-dependent sensitivity of DMAMA to incline and stiffness. We also used a machine learning model to classify locomotion modes using only the load sensor. (3) Results: We found a positive linear sensitivity of DMAMA to stiffness on ramps and level ground. Additionally, we found a positive linear sensitivity of DMAMA to ground slope in the low- and medium-stiffness conditions and a negative interaction effect between slope and stiffness. Considerable variability suggests that applications of DMAMA as a control input should look at the running average over several strides. To examine the efficacy of real-time DMAMA-based control systems, we used a machine learning model to classify locomotion modes using only the load sensor. The classifier achieved over 95% accuracy. (4) Conclusions: Based on these findings, DMAMA has potential for use as a closed-loop control input to adapt semi-active prostheses to different locomotion modes.


Assuntos
Amputados , Membros Artificiais , Tornozelo , Fenômenos Biomecânicos , Marcha , Humanos , Desenho de Prótese , Caminhada
11.
J Biomech Eng ; 143(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382638

RESUMO

INTRODUCTION: Simulations based on computational musculoskeletal models are powerful tools for evaluating the effects of potential biomechanical interventions, such as implementing a novel prosthesis. However, the utility of simulations to evaluate the effects of varied prosthesis design parameters on gait mechanics has not been fully realized due to the lack of a readily-available limb loss-specific gait model and methods for efficiently modeling the energy storage and return dynamics of passive foot prostheses. The purpose of this study was to develop and validate a forward simulation-capable gait model with lower-limb loss and a semi-active variable-stiffness foot (VSF) prosthesis. METHODS: A seven-segment 28-DoF gait model was developed and forward kinematics simulations, in which experimentally observed joint kinematics were applied and the resulting contact forces under the prosthesis evolved accordingly, were computed for four subjects with unilateral below-knee amputation walking with a VSF. RESULTS: Model-predicted resultant ground reaction force (GRFR) matched well under trial-specific optimized parameter conditions (mean R2: 0.97, RMSE: 7.7% body weight (BW)) and unoptimized (subject-specific, but not trial-specific) parameter conditions (mean R2: 0.93, RMSE: 12% BW). Simulated anterior-posterior center of pressure demonstrated a mean R2 = 0.64 and RMSE = 14% foot length. Simulated kinematics remained consistent with input data (0.23 deg RMSE, R2 > 0.99) for all conditions. CONCLUSIONS: These methods may be useful for simulating gait among individuals with lower-limb loss and predicting GRFR arising from gait with novel VSF prostheses. Such data are useful to optimize prosthesis design parameters on a user-specific basis.


Assuntos
Membros Artificiais , Amputação Cirúrgica , Fenômenos Biomecânicos , , Marcha , Humanos , Articulação do Joelho , Desenho de Prótese , Caminhada
12.
J Biomech Eng ; 143(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33704375

RESUMO

Passive energy storage and return (ESR) feet are current performance standard in lower limb prostheses. A recently developed semi-active variable-stiffness foot (VSF) prosthesis balances the simplicity of a passive ESR device with the adaptability of a powered design. The purpose of this study was to model and simulate the ESR properties of the VSF prosthesis. The ESR properties of the VSF were modeled as a lumped parameter overhung beam. The overhung length is variable, allowing the model to exhibit variable ESR stiffness. Foot-ground contact was modeled using sphere-to-plane contact models. Contact parameters were optimized to represent the geometry and dynamics of the VSF and its foam base. Static compression tests and gait were simulated. Simulation outcomes were compared to corresponding experimental data. Stiffness of the model matched that of the physical VSF (R2: 0.98, root-mean-squared error (RMSE): 1.37 N/mm). Model-predicted resultant ground reaction force (GRFR) matched well under optimized parameter conditions (R2: 0.98, RMSE: 5.3% body weight,) and unoptimized parameter conditions (R2: 0.90, mean RMSE: 13% body weight). Anterior-posterior center of pressure matched well with R2 > 0.94 and RMSE < 9.5% foot length in all conditions. The ESR properties of the VSF were accurately simulated under benchtop testing and dynamic gait conditions. These methods may be useful for predicting GRFR arising from gait with novel prostheses. Such data are useful to optimize prosthesis design parameters on a user-specific basis.


Assuntos
Marcha
13.
PLoS One ; 16(1): e0228682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33439858

RESUMO

Humans often traverse real-world environments with a variety of surface irregularities and inconsistencies, which can disrupt steady gait and require additional effort. Such effects have, however, scarcely been demonstrated quantitatively, because few laboratory biomechanical measures apply outdoors. Walking can nevertheless be quantified by other means. In particular, the foot's trajectory in space can be reconstructed from foot-mounted inertial measurement units (IMUs), to yield measures of stride and associated variabilities. But it remains unknown whether such measures are related to metabolic energy expenditure. We therefore quantified the effect of five different outdoor terrains on foot motion (from IMUs) and net metabolic rate (from oxygen consumption) in healthy adults (N = 10; walking at 1.25 m/s). Energy expenditure increased significantly (P < 0.05) in the order Sidewalk, Dirt, Gravel, Grass, and Woodchips, with Woodchips about 27% costlier than Sidewalk. Terrain type also affected measures, particularly stride variability and virtual foot clearance (swing foot's lowest height above consecutive footfalls). In combination, such measures can also roughly predict metabolic cost (adjusted R2 = 0.52, partial least squares regression), and even discriminate between terrain types (10% reclassification error). Body-worn sensors can characterize how uneven terrain affects gait, gait variability, and metabolic cost in the real world.


Assuntos
Metabolismo Energético/fisiologia , Marcha/fisiologia , Caminhada/fisiologia , Adolescente , Adulto , Fenômenos Biomecânicos/fisiologia , Feminino , Pé/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia , Adulto Jovem
14.
Sensors (Basel) ; 20(22)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202589

RESUMO

(1) Ultimate frisbee involves frequent cutting motions, which have a high risk of anterior cruciate ligament (ACL) injury, especially for female players. This study investigated the in-game cutting maneuvers performed by female ultimate frisbee athletes to understand the movements that could put them at risk of ACL injury. (2) Lower-body kinematics and movement around the field were reconstructed from wearable lower-body inertial sensors worn by 12 female players during 16 league-sanctioned ultimate frisbee games. (3) 422 cuts were identified from speed and direction change criteria. The mean cut had approach speed of 3.4 m/s, approach acceleration of 3.1 m/s2, cut angle of 94 degrees, and ground-contact knee flexion of 34 degrees. Shallow cuts from 30 to 90 degrees were most common. Speed and acceleration did not change based on cut angle. Players on more competitive teams had higher speed and acceleration and reduced knee flexion during cutting. (4) This study demonstrates that a lower-body set of wearable inertial sensors can successfully track an athlete's motion during real games, producing detailed biomechanical metrics of behavior and performance. These in-game measurements can be used to specify controlled cutting movements in future laboratory studies. These studies should prioritize higher-level players since they may exhibit higher-risk cutting behavior.


Assuntos
Articulação do Joelho , Movimento , Esportes , Dispositivos Eletrônicos Vestíveis , Adulto , Lesões do Ligamento Cruzado Anterior , Fenômenos Biomecânicos , Feminino , Humanos , Adulto Jovem
15.
Sensors (Basel) ; 20(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858833

RESUMO

This study introduces a noninvasive wearable system for investigating tendon loading patterns during outdoor locomotion on variable terrain. The system leverages shear wave tensiometry, which is a new approach for assessing tendon load by tracking wave speed within the tissue. Our wearable tensiometry system uses a battery-operated piezoelectric actuator to induce micron-scale shear waves in a tendon. A data logger monitors wave propagation by recording from two miniature accelerometers mounted on the skin above the tendon. Wave speed is determined from the wave travel time between accelerometers. The wearable system was used to record Achilles tendon wave speed at 100 Hz during 1-km outdoor walking trials in nine young adults. Inertial measurement units (IMUs) simultaneously monitored participant position, walking speed, and ground incline. An analysis of 5108 walking strides revealed the coupled biomechanical effects of terrain slope and walking speed on tendon loading. Uphill slopes increased the tendon wave speed during push-off, whereas downhill slopes increased tendon wave speeds during early stance braking. Walking speed significantly modulated peak tendon wave speed on uphill slopes but had less influence on downhill slopes. Walking speed consistently induced greater early stance wave speeds for all slopes. These observations demonstrate that wearable shear wave tensiometry holds promise for evaluating tendon tissue kinetics in natural environments and uncontrolled movements. There are numerous practical applications of wearable tensiometry spanning orthopedics, athletics, rehabilitation, and ergonomics.


Assuntos
Tendão do Calcâneo/fisiologia , Velocidade de Caminhada , Dispositivos Eletrônicos Vestíveis , Adulto , Fenômenos Biomecânicos , Feminino , Marcha , Humanos , Cinética , Masculino , Adulto Jovem
16.
IEEE Trans Neural Syst Rehabil Eng ; 28(7): 1584-1594, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32634097

RESUMO

Present robots for investigating lower-limb motor control and rehabilitation focus on gait training. An alternative approach is to focus on restoring precursor abilities such as motor adaptation and volitional movement, as is common in upper-limb robotic therapy. Here we describe NOTTABIKE, a one degree-of-freedom rehabilitation robot designed to probe and promote these underlying capabilities. A recumbent exercise cycle platform is powered with a servomotor and instrumented with angular encoders, force-torque sensing pedals, and a wireless EMG system. Virtual environments ranging from spring-mass-damper systems to novel foot-to-crank mechanical laws present variants of leg-reaching and pedaling tasks that challenge perception, cognition, motion planning, and motor control systems. This paper characterizes the dynamic performance and haptic rendering accuracy of NOTTABIKE and presents an example motor adaptation task to illustrate its use. Torque and velocity mode controllers showed near unity magnitude ratio and phase loss less than 60 degrees up to 10 Hz. Spring rendering demonstrated 1% mean error in stiffness, and damper rendering performed comparably at 2.5%. Virtual mass rendering was less accurate but successful in varying perceived mass. NOTTABIKE will be used to study lower-limb motor adaptation in intact and impaired persons and to develop rehabilitation protocols that promote volitional movement recovery.


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral , Humanos , Extremidade Inferior , Movimento , Extremidade Superior
17.
Med Eng Phys ; 64: 86-92, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30581048

RESUMO

Older adults experience slips, trips, stumbles, and other losses of balance (LOBs). LOBs are more common than falls and are closely linked to falls and fall-injuries. Data about real-world LOBs is limited, particularly information quantifying the prevalence, frequency, and intrinsic and extrinsic circumstances in which they occur. This paper describes a new method to identify and analyze LOBs through long-term recording of community-dwelling older adults. The approach uses wearable inertial measurement units (IMUs) on the feet, trunk and one wrist, together with a voice recorder for immediate, time-stamped self-reporting of the type, context and description of LOBs. Following identification of an LOB in the voice recording, concurrent IMU data is used to estimate foot paths and body motions, and to create body animations to analyze the event. In this pilot study, three older adults performed a long-term monitoring study, with four weeks recording LOBs by voice and two concurrent weeks wearing IMUs. This report presents a series of LOB cases to illustrate the proposed method, and how it can contribute to interpretation of the causes and contexts of the LOBs. The context and timing information from the voice records was critical to the process of finding and analyzing LOB events within the voluminous sensor data record, and included much greater detail, specificity, and nuance than past diary or smartphone reporting.


Assuntos
Vida Independente , Monitorização Fisiológica/métodos , Movimento , Equilíbrio Postural , Autorrelato , Idoso , Feminino , Humanos , Masculino
18.
IEEE Trans Neural Syst Rehabil Eng ; 26(12): 2351-2359, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30371376

RESUMO

This paper presents the design and validation of a novel lower limb prosthesis called the variable stiffness foot (VSF), designed to vary its forefoot stiffness in response to user activity. The VSF is designed as a semi-active device that adjusts its stiffness once per stride during swing phases, in order to minimize size, mass, and power consumption. The forefoot keel is designed as an overhung composite beam, whose stiffness is varied by moving a support fulcrum to change the length of the overhang. Stiffness modulation is programmed in response to the gait characteristics detected through foot trajectory reconstruction based on an embedded inertial sensor. The prototype VSF has a mass of only 649 g including the battery, and a build height of 87 mm. Mechanical testing demonstrated a forefoot stiffness range of 10-32 N/mm for the prototype, a threefold range of stiffness variation. The stiffness range can be altered by changing the keel material or geometry. Actuation testing showed that the VSF can make a full-scale stiffness adjustment within three strides, and tracks moderate speed-driven variations within one swing phase. Human subjects testing demonstrated greater energy storage and return with lower stiffness settings. This capability may be useful for the modulating prosthesis energy return to better mimic human ankle function. Subjective feedback indicated clear perception by the subjects of contrasts among the stiffness settings, including interpretation of scenarios for which different settings may be beneficial. Future applications of the VSF include adapting stiffness to optimize stairs, ramps, turns, and standing.


Assuntos
Órtoses do Pé , Desenho de Prótese , Tornozelo , Fenômenos Biomecânicos , Marcha/fisiologia , Humanos , Reprodutibilidade dos Testes
19.
Gait Posture ; 55: 87-93, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28433867

RESUMO

Inertial measurement units (IMUs) are small wearable sensors that have tremendous potential to be applied to clinical gait analysis. They allow objective evaluation of gait and movement disorders outside the clinic and research laboratory, and permit evaluation on large numbers of steps. However, repeatability and validity data of these systems are sparse for gait metrics. The purpose of this study was to determine the validity and between-day repeatability of spatiotemporal metrics (gait speed, stance percent, swing percent, gait cycle time, stride length, cadence, and step duration) as measured with the APDM Opal IMUs and Mobility Lab system. We collected data on 39 healthy subjects. Subjects were tested over two days while walking on a standard treadmill, split-belt treadmill, or overground, with IMUs placed in two locations: both feet and both ankles. The spatiotemporal measurements taken with the IMU system were validated against data from an instrumented treadmill, or using standard clinical procedures. Repeatability and minimally detectable change (MDC) of the system was calculated between days. IMUs displayed high to moderate validity when measuring most of the gait metrics tested. Additionally, these measurements appear to be repeatable when used on the treadmill and overground. The foot configuration of the IMUs appeared to better measure gait parameters; however, both the foot and ankle configurations demonstrated good repeatability. In conclusion, the IMU system in this study appears to be both accurate and repeatable for measuring spatiotemporal gait parameters in healthy young adults.


Assuntos
Acelerometria/métodos , Teste de Esforço/métodos , Marcha/fisiologia , Adulto , Articulação do Tornozelo/fisiologia , Feminino , Pé/fisiologia , Humanos , Masculino , Reprodutibilidade dos Testes , Caminhada/fisiologia , Velocidade de Caminhada/fisiologia , Adulto Jovem
20.
J Biomech ; 53: 1-8, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28161109

RESUMO

Humans perform a variety of feedback adjustments to maintain balance during walking. These include lateral footfall placement, and center of pressure adjustment under the stance foot, to stabilize lateral balance. A less appreciated possibility would be to steer for balance like a bicycle, whose front wheel may be turned toward the direction of a lean to capture the center of mass. Humans could potentially combine steering with other strategies to distribute balance adjustments across multiple degrees of freedom. We tested whether human balance can theoretically benefit from steering, and experimentally tested for evidence of steering for balance. We first developed a simple dynamic walking model, which shows that bipedal walking may indeed be stabilized through steering-externally rotating the foot about vertical toward the direction of lateral lean for each footfall-governed by linear feedback control. Moreover, least effort (mean-square control torque) is required if steering is combined with lateral foot placement. If humans use such control, footfall variability should show a statistical coupling between external rotation with lateral placement. We therefore examined the spontaneous fluctuations of hundreds of strides of normal overground walking in healthy adults (N=26). We found significant coupling (P=9·10-8), of 0.54rad of external rotation per meter of lateral foot deviation. Successive footfalls showed a weaker, negative correlation with each other, similar to how a bicycle׳s steering adjustment made for balance must be followed by gradual corrections to resume the original travel direction. Steering may be one of multiple strategies to stabilize balance during walking.


Assuntos
Pé/fisiologia , Equilíbrio Postural/fisiologia , Caminhada/fisiologia , Adolescente , Adulto , Fenômenos Biomecânicos , Retroalimentação Fisiológica , Feminino , Humanos , Masculino , Modelos Biológicos , Torque , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...